国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

使用python接受tgam的腦波數據實例

瀏覽:7日期:2022-07-30 16:13:54

廢話不多說,來看看實例吧!

# -*- coding: utf-8 -*-import serial filename=’yjy.txt’ t = serial.Serial(’COM5’,57600)b=t.read(3)vaul=[]i=0y=0p=0while b[0]!=170 or b[1]!=170 or b[2]!=4: b=t.read(3) print(b)if b[0]==b[1]==170 and b[2]==4: a=b+t.read(5) print(a) if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2: while 1: i=i+1# print(i) a=t.read(8)# print(a) sum=((0x80+0x02+a[5]+a[6])^0xffffffff)&0xff if a[0]==a[1]==170 and a[2]==32: y=1 else: y=0 if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2: p=1 else: p=0 if sum!=a[7] and y!=1 and p!=1: print('wrroy1') b=t.read(3) c=b[0] d=b[1] e=b[2] print(b) while c!=170 or d!=170 or e!=4: c=d d=e e=t.read() print('c:') print(c) print('d:') print(d) print('e:') print(e) if c==(b’xaa’or 170) and d==(b’xaa’or 170) and e==b’x04’: g=t.read(5) print(g) if c == b’xaa’ and d==b’xaa’ and e==b’x04’ and g[0]==128 and g[1]==2: a=t.read(8) print(a) break # if a[0]==a[1]==170 and a[2]==4: # print(type(a)) if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2: high=a[5] low=a[6]# print(a) rawdata=(high<<8)|low if rawdata>32768: rawdata=rawdata-65536# vaul.append(rawdata) sum=((0x80+0x02+high+low)^0xffffffff)&0xff if sum==a[7]: vaul.append(rawdata) if sum!=a[7]: print('wrroy2') b=t.read(3) c=b[0] d=b[1] e=b[2]# print(b) while c!=170 or d!=170 or e!=4: c=d d=e e=t.read() if c==b’xaa’ and d==b’xaa’ and e==b’x04’: g=t.read(5) print(g) if c == b’xaa’ and d==b’xaa’ and e==b’x04’ and g[0]==128 and g[1]==2: a=t.read(8) print(a) break if a[0]==a[1]==170 and a[2]==32: c=a+t.read(28) print(vaul) print(len(vaul)) for v in vaul: w=0 if v<=102: w+=v q=w/len(vaul) q=str(q) with open(filename,’a’) as file_object: file_object.write(q) file_object.write('n') if 102<v<=204: w+=v q=w/len(vaul) q=str(q) with open(filename,’a’) as file_object: file_object.write(q) file_object.write('n') if 204<v<=306: w+=v q=w/len(vaul) q=str(q) with open(filename,’a’) as file_object: file_object.write(q) file_object.write('n') if 306<v<=408: w+=v q=w/len(vaul) q=str(q) with open(filename,’a’) as file_object: file_object.write(q) file_object.write('n') if 408<v<=510: w+=v q=w/len(vaul) q=str(q) with open(filename,’a’) as file_object: file_object.write(q) file_object.write('n')# print(c) vaul=[]# if i==250:# break# with open(filename,’a’) as file_object:# file_object.write(q)# file_object.write('n')

補充知識:Python處理腦電數據:PCA數據降維

pca.py

#!-coding:UTF-8-from numpy import *import numpy as npdef loadDataSet(fileName, delim=’t’): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [map(float,line) for line in stringArr] return mat(datArr)def percentage2n(eigVals,percentage): sortArray=np.sort(eigVals) #升序 sortArray=sortArray[-1::-1] #逆轉,即降序 arraySum=sum(sortArray) tmpSum=0 num=0 for i in sortArray: tmpSum+=i num+=1 if tmpSum>=arraySum*percentage: return numdef pca(dataMat, topNfeat=9999999): meanVals = mean(dataMat, axis=0) meanRemoved = dataMat - meanVals #remove mean covMat = cov(meanRemoved, rowvar=0) eigVals,eigVects = linalg.eig(mat(covMat)) eigValInd = argsort(eigVals) #sort, sort goes smallest to largest eigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensions redEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallest lowData_N = meanRemoved * redEigVects#transform data into new dimensions reconMat_N = (lowData_N * redEigVects.T) + meanVals return lowData_N,reconMat_Ndef pcaPerc(dataMat, percentage=1): meanVals = mean(dataMat, axis=0) meanRemoved = dataMat - meanVals #remove mean covMat = cov(meanRemoved, rowvar=0) eigVals,eigVects = linalg.eig(mat(covMat)) eigValInd = argsort(eigVals) #sort, sort goes smallest to largest n=percentage2n(eigVals,percentage) n_eigValIndice=eigValInd[-1:-(n+1):-1] n_eigVect=eigVects[:,n_eigValIndice] lowData_P=meanRemoved*n_eigVect reconMat_P = (lowData_P * n_eigVect.T) + meanVals return lowData_P,reconMat_P

readData.py

import matplotlib.pyplot as pltfrom pylab import *import numpy as npimport scipy.io as siodef loadData(filename,mName): load_fn = filename load_data = sio.loadmat(load_fn) load_matrix = load_data[mName] #load_matrix_row = load_matrix[0] #figure(mName) #plot(load_matrix,’r-’) #show() #print type(load_data) #print type(load_matrix) #print load_matrix_row return load_matrix

main.py

#!-coding:UTF-8import matplotlib.pyplot as pltfrom pylab import *import numpy as npimport scipy.io as sioimport pcafrom numpy import mat,matriximport scipy as spimport readDataimport pcaif __name__ == ’__main__’: A1=readData.loadData(’6electrodes.mat’,’A1’) lowData_N, reconMat_N= pca.pca(A1,30) lowData_P, reconMat_P = pca.pcaPerc(A1,0.95) #print lowDMat #print reconMat print shape(lowData_N) print shape(reconMat_N) print shape(lowData_P) print shape(reconMat_P)

以上這篇使用python接受tgam的腦波數據實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 香港全黄一级毛片在线播放 | 国产欧美久久精品 | 欧美性色xo在线 | 欧美成人eee在线 | 亚洲国产成人综合精品2020 | 亚洲最新视频在线观看 | 久久国产免费 | 国产亚洲精品美女一区二区 | 亚洲黄色免费在线观看 | 日韩国产成人资源精品视频 | 成人自拍视频网站 | 久久精品视频一区二区三区 | 国产午夜三级 | 久久久国产亚洲精品 | 久久福利青草免费精品 | 亚洲在线视频免费观看 | 一区在线视频 | 亚洲欧美7777 | 农村三级孕妇视频在线 | 日韩免费精品一级毛片 | 亚洲精品久久久久久久久久久网站 | 精品国产一区二区三区在线 | 国产专区中文字幕 | 在线免费公开视频 | 成年人国产视频 | 日韩在线视频中文字幕 | 亚洲精品成人av在线 | 欧美成亚洲 | 日韩亚洲欧美一区二区三区 | 久久免费高清 | 欧美视频成人 | 91日本在线精品高清观看 | 精品在线免费观看 | 欧美大尺度aaa级毛片 | 久草在线资源 | 亚洲手机视频 | 中文字幕一区二区三区精彩视频 | 香港三澳门三日本三级 | 亚洲天堂一区二区在线观看 | 4438全国最大成人网视频 | www.午夜|