国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術(shù)文章
文章詳情頁

Python基于Dlib的人臉識別系統(tǒng)的實現(xiàn)

瀏覽:2日期:2022-08-06 08:52:16

之前已經(jīng)介紹過人臉識別的基礎(chǔ)概念,以及基于opencv的實現(xiàn)方式,今天,我們使用dlib來提取128維的人臉嵌入,并使用k臨近值方法來實現(xiàn)人臉識別。

人臉識別系統(tǒng)的實現(xiàn)流程與之前是一樣的,只是這里我們借助了dlib和face_recognition這兩個庫來實現(xiàn)。face_recognition是對dlib庫的包裝,使對dlib的使用更方便。所以首先要安裝這2個庫。

pip3 install dlibpip3 install face_recognition

然后,還要安裝imutils庫

pip3 install imutils

我們看一下項目的目錄結(jié)構(gòu):

.├── dataset│ ├── alan_grant [22 entries exceeds filelimit, not opening dir]│ ├── claire_dearing [53 entries exceeds filelimit, not opening dir]│ ├── ellie_sattler [31 entries exceeds filelimit, not opening dir]│ ├── ian_malcolm [41 entries exceeds filelimit, not opening dir]│ ├── john_hammond [36 entries exceeds filelimit, not opening dir]│ └── owen_grady [35 entries exceeds filelimit, not opening dir]├── examples│ ├── example_01.png│ ├── example_02.png│ └── example_03.png├── output│ ├── lunch_scene_output.avi│ └── webcam_face_recognition_output.avi├── videos│ └── lunch_scene.mp4├── encode_faces.py├── encodings.pickle├── recognize_faces_image.py├── recognize_faces_video_file.py├── recognize_faces_video.py└── search_bing_api.py 10 directories, 12 files

首先,提取128維的人臉嵌入:

命令如下:

python3 encode_faces.py --dataset dataset --encodings encodings.pickle -d hog

記住:如果你的電腦內(nèi)存不夠大,請使用hog模型進行人臉檢測,如果內(nèi)存夠大,可以使用cnn神經(jīng)網(wǎng)絡(luò)進行人臉檢測。

看代碼:

# USAGE# python encode_faces.py --dataset dataset --encodings encodings.pickle # import the necessary packagesfrom imutils import pathsimport face_recognitionimport argparseimport pickleimport cv2import os # construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument('-i', '--dataset', required=True,help='path to input directory of faces + images')ap.add_argument('-e', '--encodings', required=True,help='path to serialized db of facial encodings')ap.add_argument('-d', '--detection-method', type=str, default='hog',help='face detection model to use: either `hog` or `cnn`')args = vars(ap.parse_args()) # grab the paths to the input images in our datasetprint('[INFO] quantifying faces...')imagePaths = list(paths.list_images(args['dataset'])) # initialize the list of known encodings and known namesknownEncodings = []knownNames = [] # loop over the image pathsfor (i, imagePath) in enumerate(imagePaths):# extract the person name from the image pathprint('[INFO] processing image {}/{}'.format(i + 1,len(imagePaths)))name = imagePath.split(os.path.sep)[-2] # load the input image and convert it from RGB (OpenCV ordering)# to dlib ordering (RGB)image = cv2.imread(imagePath)rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # detect the (x, y)-coordinates of the bounding boxes# corresponding to each face in the input imageboxes = face_recognition.face_locations(rgb,model=args['detection_method']) # compute the facial embedding for the faceencodings = face_recognition.face_encodings(rgb, boxes) # loop over the encodingsfor encoding in encodings:# add each encoding + name to our set of known names and# encodingsknownEncodings.append(encoding)knownNames.append(name) # dump the facial encodings + names to diskprint('[INFO] serializing encodings...')data = {'encodings': knownEncodings, 'names': knownNames}f = open(args['encodings'], 'wb')f.write(pickle.dumps(data))f.close()

輸出結(jié)果是每張圖片輸出一個人臉的128維的向量和對于的名字,并序列化到硬盤,供后續(xù)人臉識別使用。

識別圖像中的人臉:

這里使用KNN方法實現(xiàn)最終的人臉識別,而不是使用SVM進行訓(xùn)練。

命令如下:

python3 recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png

看代碼:

# USAGE# python recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png # import the necessary packagesimport face_recognitionimport argparseimport pickleimport cv2 # construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument('-e', '--encodings', required=True,help='path to serialized db of facial encodings')ap.add_argument('-i', '--image', required=True,help='path to input image')ap.add_argument('-d', '--detection-method', type=str, default='cnn',help='face detection model to use: either `hog` or `cnn`')args = vars(ap.parse_args()) # load the known faces and embeddingsprint('[INFO] loading encodings...')data = pickle.loads(open(args['encodings'], 'rb').read()) # load the input image and convert it from BGR to RGBimage = cv2.imread(args['image'])rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # detect the (x, y)-coordinates of the bounding boxes corresponding# to each face in the input image, then compute the facial embeddings# for each faceprint('[INFO] recognizing faces...')boxes = face_recognition.face_locations(rgb,model=args['detection_method'])encodings = face_recognition.face_encodings(rgb, boxes) # initialize the list of names for each face detectednames = [] # loop over the facial embeddingsfor encoding in encodings:# attempt to match each face in the input image to our known# encodingsmatches = face_recognition.compare_faces(data['encodings'],encoding)name = 'Unknown' # check to see if we have found a matchif True in matches:# find the indexes of all matched faces then initialize a# dictionary to count the total number of times each face# was matchedmatchedIdxs = [i for (i, b) in enumerate(matches) if b]counts = {} # loop over the matched indexes and maintain a count for# each recognized face facefor i in matchedIdxs:name = data['names'][i]counts[name] = counts.get(name, 0) + 1 # determine the recognized face with the largest number of# votes (note: in the event of an unlikely tie Python will# select first entry in the dictionary)name = max(counts, key=counts.get)# update the list of namesnames.append(name) # loop over the recognized facesfor ((top, right, bottom, left), name) in zip(boxes, names):# draw the predicted face name on the imagecv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)y = top - 15 if top - 15 > 15 else top + 15cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), 2) # show the output imagecv2.imshow('Image', image)cv2.waitKey(0)

實際效果如下:

Python基于Dlib的人臉識別系統(tǒng)的實現(xiàn)

如果要詳細了解細節(jié),請參考:https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

到此這篇關(guān)于Python基于Dlib的人臉識別系統(tǒng)的實現(xiàn)的文章就介紹到這了,更多相關(guān)Python Dlib人臉識別內(nèi)容請搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!

標簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 免费看黄色三级毛片 | 国产美女动态免费视频 | 天天舔夜夜操 | 日韩中文字幕在线观看 | 免费观看三级毛片 | free性chinese国语对白 | 国产精品亚洲欧美日韩一区在线 | 中文字幕色站 | 国产成人久久精品二区三区牛 | 欧美视频精品一区二区三区 | 国产精品久久久99 | 97视频在线播放 | 97在线播放视频 | 欧美日韩免费做爰视频 | 日韩精品无码一区二区三区 | 国产精品18久久久久网站 | 欧美国产日韩在线 | 久久99视频精品 | 久久久久久网站 | 国模肉肉人体大尺度啪啪 | 欧美精品一区二区三区免费播放 | 久久ri精品高清一区二区三区 | 国产www| 亚洲成年网站在线观看 | 久香草视频在线观看 | 久久久视 | 日韩精品特黄毛片免费看 | 亚洲精品国产精品国自产 | 日韩加勒比在线 | avtom影院入口永久在线 | 国产黄三级三·级三级 | 国产日产欧产精品精品推荐小说 | 国产成人精品午夜在线播放 | 毛片免费看网站 | 国产日产高清欧美一区二区三区 | 日韩中文字幕在线视频 | wwwav在线| 成年午夜性爽快免费视频不卡 | 一级黄色香蕉视频 | 国产免费一区二区三区在线观看 | 亚洲精品一级片 |