国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術(shù)文章
文章詳情頁

python numpy中setdiff1d的用法說明

瀏覽:22日期:2022-06-21 16:22:59
一、函數(shù)解釋

setdiff1d(ar1, ar2, assume_unique=False)

1.功能:找到2個數(shù)組中集合元素的差異。

2.返回值:在ar1中但不在ar2中的已排序的唯一值。

3.參數(shù):

ar1:array_like 輸入數(shù)組。

ar2:array_like 輸入比較數(shù)組。

assume_unique:bool。如果為True,則假定輸入數(shù)組是唯一的,即可以加快計算速度。 默認(rèn)值為False。

二、具體示例1.assume_unique = False的情況:

a = np.array([1,2,3]) b = np.array([4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2 3] a = np.array([1,2,3]) b = np.array([1,2,3]) c = np.setdiff1d(a, b) print(c)#[] a = np.array([1,2,3]) b = np.array([2,3,4]) c = np.setdiff1d(a, b) print(c)#[1] a = np.array([1,2,3,4]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([1,2,3,2,4,1]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b) print(c)#[1 2 8]

可以從最后看出返回的值從小到大排序,并且唯一。(8在a的第1位,2在a中重復(fù)了2次)

2.assume_unique = True的情況:

a = np.array([3,2,1]) b = np.array([4,5,6]) c = np.setdiff1d(a, b,True) print(c)#[3 2 1] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 2 1] a = np.array([8,2,3,4,2,4,1]) b = np.array([7,9,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 4 2 4 1]

可以看出把在a中的但是不在b中的元素按a中的順序排序,并且不合并重復(fù)的元素,即假定輸入數(shù)組也是唯一的,因此相比于False確實提升了運算速度。

三、整體代碼

import numpy as np def main(): a = np.array([1,2,3]) b = np.array([4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2 3] a = np.array([1,2,3]) b = np.array([1,2,3]) c = np.setdiff1d(a, b) print(c)#[] a = np.array([1,2,3]) b = np.array([2,3,4]) c = np.setdiff1d(a, b) print(c)#[1] a = np.array([1,2,3,4]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([1,2,3,2,4,1]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b) print(c)#[1 2 8] a = np.array([3,2,1]) b = np.array([4,5,6]) c = np.setdiff1d(a, b,True) print(c)#[3 2 1] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 2 1] a = np.array([8,2,3,4,2,4,1]) b = np.array([7,9,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 4 2 4 1] if __name__ == ’__main__’: main()

python numpy中setdiff1d的用法說明

補(bǔ)充:Python編程之numpy庫函數(shù)in1d的使用

最近利用Python作數(shù)值分析時使用到numpy庫下的in1d函數(shù)。in1d函數(shù)與excel中vlookup函數(shù)和MATLAB中ismember函數(shù)有相似之處。其作用在于在序列B中尋找與序列A相同的值,并返回一邏輯值(True,False)或邏輯值構(gòu)成的向量。

具體例子見下文

設(shè)mask為邏輯值向量,矩陣x的第一列為待查找向量,d為被查詢向量(或值),即查找x中與d中指定元素相同的值,并返回邏輯值向量mask。mask是由一系列True和False值構(gòu)成,True代表找到相同的值,而False代表沒找到相同的值。演示如下:

mask= np.in1d(x.values[:,1],d[1],invert=False) ##x為DataFrame型數(shù)據(jù),x.values[:,1]表示取第二列值x_temp=x[mask]

示取第二列值

x_temp=x[mask]

該例旨在查找 x 的第二列值中與d向量中第二個元素相同的部分 ,并返回mask邏輯向量;然后x_temp返回x中mask邏輯值為True的行。

mask向量的類型為bool,查看具體值下圖所示:

python numpy中setdiff1d的用法說明

python numpy中setdiff1d的用法說明

值得注意的地方在于in1d函數(shù)中invert參數(shù)的設(shè)置。當(dāng)invert=True時,mask中的元素值為True的部分對x.values[:,1]中與當(dāng)前查找的元素d[i]不同的部分(i為當(dāng)前查找位置),相同的部分則為false;當(dāng)invert=False時,mask中的元素值為True的部分對x.values[:,1]中與當(dāng)前查找的元素d[i]相同的部分(i為當(dāng)前查找位置)。

演示見下圖:

當(dāng)mask= np.in1d(x.values[:,1],d[2],invert=True)

python numpy中setdiff1d的用法說明

當(dāng)mask= np.in1d(x.values[:,1],d[2],invert=False)時

python numpy中setdiff1d的用法說明

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持好吧啦網(wǎng)。如有錯誤或未考慮完全的地方,望不吝賜教。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 亚洲精品美女在线观看 | 国产欧美在线观看不卡 | 亚洲天堂久久精品成人 | 国产在线精品福利91香蕉 | 日韩免费一级片 | 福利视频黄 | 国产超薄肉色丝袜足j | 日韩在线免费 | 99爱在线观看精品视频 | 欧美a在线 | 国产女人在线视频 | 久久99久久精品国产只有 | 免费在线观看一级毛片 | 大量真实偷拍情侣视频野战 | 久久九九视频 | 国产一级做a爰片久久毛片 国产一级做a爰片久久毛片99 | 国产欧美综合精品一区二区 | 欧美日韩一级片在线观看 | 自拍 欧美| 日本一线a视频免费观看 | 精品久久一区 | 亚洲一区在线视频观看 | 亚洲在线免费观看视频 | 久久欧美成人精品丝袜 | 国产欧美曰韩一区二区三区 | 中文字幕在线视频网站 | 综合亚洲一区二区三区 | 国产精品毛片va一区二区三区 | 手机在线毛片 | 久久精视频 | www.91亚洲| 免费观看欧美一级毛片 | 国产免费自拍视频 | 自拍一区在线观看 | 99精品国产高清一区二区三区香蕉 | 亚洲成a人片在线观看中文 亚洲成a人片在线观看中文!!! | 日本黄色免费大片 | 国产人成精品 | 美女黄色一级片 | 精品国产综合区久久久久久 | 德国女人一级毛片免费 |