国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁技術文章
文章詳情頁

python Polars庫的使用簡介

瀏覽:5日期:2022-06-21 18:33:16

大家好,我是小F~

很多人在學習數據分析的時候,肯定都會用到Pandas這個庫,非常的實用!

從創建數據到讀取各種格式的文件(text、csv、json),或者對數據進行切片和分割組合多個數據源,Pandas都能夠很好的滿足。

Pandas最初發布于2008年,使用Python、Cython和C編寫的。是一個超級強大、快速和易于使用的Python庫,用于數據分析和處理。

當然Pandas也是有不足之處的,比如不具備多處理器,處理較大的數據集速度很慢。

今天,小F就給大家介紹一個新興的Python庫——Polars。

使用語法和Pandas差不多,處理數據的速度卻比Pandas快了不少。

一個是大熊貓,一個是北極熊~

GitHub地址:https://github.com/ritchie46/polars

使用文檔:https://ritchie46.github.io/polars-book/

Polars是通過Rust編寫的一個庫,Polars的內存模型是基于Apache Arrow。

Polars存在兩種API,一種是Eager API,另一種則是Lazy API。

其中Eager API和Pandas的使用類似,語法差不太多,立即執行就能產生結果。

python Polars庫的使用簡介

而Lazy API就像Spark,首先將查詢轉換為邏輯計劃,然后對計劃進行重組優化,以減少執行時間和內存使用。

安裝Polars,使用百度pip源。

# 安裝polarspip install polars -i https://mirror.baidu.com/pypi/simple/

安裝成功后,開始測試,比較Pandas和Polars處理數據的情況。

使用某網站注冊用戶的用戶名數據進行分析,包含約2600萬個用戶名的CSV文件。

文件已上傳公眾號,獲取方式見文末。

import pandas as pddf = pd.read_csv(’users.csv’)print(df)

數據情況如下。

python Polars庫的使用簡介

此外還使用了一個自己創建的CSV文件,用以數據整合測試。

import pandas as pddf = pd.read_csv(’fake_user.csv’)print(df)

得到結果如下。

python Polars庫的使用簡介

首先比較一下兩個庫的排序算法耗時。

import timeitimport pandas as pdstart = timeit.default_timer()df = pd.read_csv(’users.csv’)df.sort_values(’n’, ascending=False)stop = timeit.default_timer()print(’Time: ’, stop - start)-------------------------Time: 27.555776743218303

可以看到使用Pandas對數據進行排序,花費了大約28s。

import timeitimport polars as plstart = timeit.default_timer()df = pl.read_csv(’users.csv’)df.sort(by_column=’n’, reverse=True)stop = timeit.default_timer()print(’Time: ’, stop - start)-----------------------Time: 9.924110282212496

Polars只花費了約10s,這意味著Polars比Pandas快了2.7倍。

下面,我們來試試數據整合的效果,縱向連接。

import timeitimport pandas as pdstart = timeit.default_timer()df_users = pd.read_csv(’users.csv’)df_fake = pd.read_csv(’fake_user.csv’)df_users.append(df_fake, ignore_index=True)stop = timeit.default_timer()print(’Time: ’, stop - start)------------------------Time: 15.556222308427095

使用Pandas耗時15s。

import timeitimport polars as plstart = timeit.default_timer()df_users = pl.read_csv(’users.csv’)df_fake = pl.read_csv(’fake_user.csv’)df_users.vstack(df_fake)stop = timeit.default_timer()print(’Time: ’, stop - start)-----------------------Time: 3.475433263927698

Polars居然最使用了約3.5s,這里Polars比Pandas快了4.5倍。

通過上面的比較,Polars在處理速度上表現得相當不錯。

可以是大家在未來處理數據時,另一種選擇~

當然,Pandas目前歷時12年,已經形成了很成熟的生態,支持很多其它的數據分析庫。

Polars則是一個較新的庫,不足的地方還有很多。

如果你的數據集對于Pandas來說太大,對于Spark來說太小,那么Polars便是你可以考慮的一個選擇。

文件地址:

鏈接:https://pan.baidu.com/s/14fFNOPomQe38RLbAUq5W7w 密碼:nfqv

以上就是python Polars庫的使用簡介的詳細內容,更多關于python Polars庫的使用的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 91香蕉国产亚洲一区二区三区 | 中文国产成人精品久久无广告 | 日韩 国产 欧美视频一区二区三区 | 一级v片 | 99爱在线精品视频免费观看9 | 成人影院欧美大片免费看 | 欧美色欧| 久久久精品免费视频 | 91精品国产色综合久久不 | 久久亚洲网 | 久久狠狠 | 免费国产成人综合 | 一级做a级爰片性色毛片视频 | 日韩精品三级 | 亚洲国产成人久久综合野外 | 99爱视频 | 久久精品亚洲精品国产欧美 | 国产区精品一区二区不卡中文 | 99国产精品免费观看视频 | 不卡精品国产_亚洲人成在线 | 乱人伦中文字幕视频 | 亚洲日韩aⅴ在线视频 | 亚洲欧美日韩综合久久久久 | 欧美精品在线免费观看 | 久久免费看片 | 国产精品视频成人 | 在线国产毛片 | 色女生影院| 欧美成人区| 亚洲国产精品67194成人 | 一级毛片视频在线 | 日韩一区二区在线播放 | 日本 亚洲 欧美 | 在线视频观看一区 | 九九精品在线视频 | 亚洲综合精品一区二区三区中文 | 一级毛片在线播放 | 欧美性色xo在线 | 久久综合给合久久狠狠狠97色69 | 中文字幕亚洲精品第一区 | 亚洲第一免费网站 |