国产成人精品久久免费动漫-国产成人精品天堂-国产成人精品区在线观看-国产成人精品日本-a级毛片无码免费真人-a级毛片毛片免费观看久潮喷

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

瀏覽:2日期:2022-07-06 11:57:24

1、介紹

Pandas是基于Numpy的專業(yè)數(shù)據(jù)分析工具,可以靈活高效的處理各種數(shù)據(jù)集,也是我們后期分析案例的神器。它提供了兩種類型的數(shù)據(jù)結(jié)構(gòu),分別是DataFrame和Series,我們可以簡(jiǎn)單粗暴的把DataFrame理解為Excel里面的一張表,而Series就是表中的某一列

2、創(chuàng)建DataFrame

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass test_stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, ) print(test_stu) stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, index=[’小紅’, ’小李’, ’小白’, ’小黑’, ’小青’] # 指定index索引 ) print(stu)

運(yùn)行

高數(shù) 大物 英語(yǔ)0 66 88 991 77 77 842 88 85 873 99 78 564 85 65 75 高數(shù) 大物 英語(yǔ)小紅 66 88 99小李 77 77 84小白 88 85 87小黑 99 78 56小青 85 65 75

3、讀取CSV或Excel(.xlsx)進(jìn)行簡(jiǎn)單操作(增刪改查)

data.csv

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 print(data.head(5)) # 顯示前5行, print(data.tail(5)) # 顯示后5行 print(data) # 顯示所有數(shù)據(jù) print(data[’height’]) # 顯示height列 print(data[[’height’, ’weight’]]) # 顯示height和weight列 data.to_csv(’write.csv’) # 保存到csv文件 data.to_excel(’write.xlsx’) # 保存到xlsx文件 data.info() # 查看數(shù)據(jù)信息(總行數(shù),有無(wú)空缺數(shù)據(jù),類型) print(data.describe()) # (count非空值,mean均值、std標(biāo)準(zhǔn)差、min最小值、max最大值25%50%75%分位數(shù)。) data[’新增列’] = range(0, len(data)) # 類似字典直接添加即可 print(data) new_data = data.drop(’新增列’, axis=1, inplace=False) # 刪除列,如果inplace為True則在源數(shù)據(jù)刪除,返回None,否則返回新數(shù)據(jù),不改動(dòng)源數(shù)據(jù) print(new_data) data[’體重+身高’] = data[’height’] + data[’weight’] print(data) data[’remark’] = data[’remark’].str.replace(’to’, ’’) # 操作字符串 print(data[’remark’]) data[’birth’] = pandas.to_datetime(data[’birth’]) # 轉(zhuǎn)為日期類型 print(data[’birth’])

4、根據(jù)條件進(jìn)行篩選,截取

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 a = data.iloc[:12, ] # 截取0-12行,列全截 # print(a) b = data.iloc[:, [1, 3]] # 行全截,列1,3 # print(b) c = data.iloc[0:12, 0:4] # 截取行0-12,列0-4 # print(c) d = data[’sex’] == 1 # 查看性別為1(男)的 # print(d) f = data.loc[data[’sex’] == 1, :] # 查看性別為1(男)的 # print(f) g = data.loc[:, [’weight’, ’height’]] # 選取身高體重 # print(g) h = data.loc[data[’height’].isin([166, 175]), :] # 選取身高166,175的數(shù)據(jù) # print(h) h1 = data.loc[data[’height’].isin([166, 175]), [’weight’, ’height’]] # 選取身高166,175的數(shù)據(jù) # print(h1) i = data[’height’].mean() # 均值 j = data[’height’].std() # 方差 k = data[’height’].median() # 中位數(shù) l = data[’height’].min() # 最小值 m = data[’height’].max() # 最大值 # print(i) # print(j) # print(k) # print(l) # print(m) n = data.loc[ (data[’height’] > data[’height’].mean()) & (data[’weight’] > data[’weight’].mean()), :] # 身高大于身高均值,且體重大于體重均值,不能用and要用&如果是或用| print(n)

5、清Nan數(shù)據(jù),去重,分組,合并

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass sheet1 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet1’) # 讀取sheet1 # print(sheet1) # print(’-------------------------’) sheet2 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet2’) # 讀取sheet2 # print(sheet2) # print(’-------------------------’) a = pandas.concat([sheet1, sheet2]) # 合并 # print(a) # print(’-------------------------’) b = a.dropna() # 刪除空數(shù)據(jù)nan,有nan的就刪除 # print(b) # print(’-------------------------’) b1 = a.dropna(subset=[’weight’]) # 刪除指定列的空數(shù)據(jù)nan # print(b1) # print(’-------------------------’) c = b.drop_duplicates() # 刪除重復(fù)數(shù)據(jù) # print(c) # print(’-------------------------’) d = b.drop_duplicates(subset=[’weight’]) # 刪除指定列的重復(fù)數(shù)據(jù) # print(d) # print(’-------------------------’) e = b.drop_duplicates(subset=[’weight’], keep=’last’) # 刪除指定列的重復(fù)數(shù)據(jù),保存最后一個(gè)相同數(shù)據(jù) # print(e) # print(’-------------------------’) f = a.sort_values([’weight’], ascending=False) # 從大到小排序weight # print(f) g = c.groupby([’sex’]).sum() # 根據(jù)sex分組,再求和 # print(g) g1 = c.groupby([’sex’], as_index=False).sum() # 根據(jù)sex分組,再求和,但sex不作為索引 # print(g1) g2 = c.groupby([’sex’, ’weight’]).sum() # 根據(jù)sex分組后再根據(jù)weight分組,再求和 # print(g2) h = pandas.cut(c[’weight’], bins=[80, 90, 100, 150, 200], ) # 根據(jù)區(qū)間分割體重 print(h) # print(’-------------------------’) c[’根據(jù)體重分割’] = h # 會(huì)有警告,未解決,但不影響結(jié)果 print(c)

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 午夜亚洲精品 | 久久99国产综合精品 | 欧美手机手机在线视频一区 | 窝窝女人体国产午夜视频 | 日韩特级毛片免费观看视频 | 综合 欧美 国产 视频二区 | 99re国产视频| 手机看片成人 | 欧美成人 一区二区三区 | 国产精品免费看久久久久 | 一级做a爰全过程免费视频毛片 | 一本色道久久爱 | 免费一区二区三区久久 | 久久免费成人 | 亚洲视频偷拍自拍 | 久久精品中文字幕免费 | 一级国产在线观看高清 | 欧美成人综合 | 欧美黄网站免费观看 | 日韩欧美自拍 | 国内精品伊人久久久久妇 | 国产精品免费_区二区三区观看 | 波多野结衣在线观看3人 | 日本加勒比网站 | 日本一级视频 | 久久免费在线观看 | 日韩三级在线观看视频 | 日韩亚洲国产综合久久久 | 久久一本精品久久精品66 | 久久免费精彩视频 | 欧美笫一页 | 黄色欧美视频 | 草草草在线视频 | 欧美成人午夜在线全部免费 | 欧美精品高清 | 老师张开腿让我捅 | 亚洲精品一区二区三区四区手机版 | 国产精品久久在线 | 在线观看一级毛片 | 亚洲美女视频网 | 亚洲欧美日本在线观看 |